파이썬은 CSV를 목록으로 가져옵니다.
약 2000 개의 레코드가있는 CSV 파일이 있습니다.
각 레코드에는 문자열과 범주가 있습니다.
This is the first line, Line1
This is the second line, Line2
This is the third line, Line3
이 파일을 다음과 같은 목록으로 읽어야합니다.
List = [('This is the first line', 'Line1'),
('This is the second line', 'Line2'),
('This is the third line', 'Line3')]
이것을 csv
파이썬을 사용하여 필요한 목록으로 어떻게 가져올 수 있습니까?
csv
모듈을 사용하십시오 (Python 2.x).
import csv
with open('file.csv', 'rb') as f:
reader = csv.reader(f)
your_list = list(reader)
print your_list
# [['This is the first line', 'Line1'],
# ['This is the second line', 'Line2'],
# ['This is the third line', 'Line3']]
튜플이 필요한 경우 :
import csv
with open('test.csv', 'rb') as f:
reader = csv.reader(f)
your_list = map(tuple, reader)
print your_list
# [('This is the first line', ' Line1'),
# ('This is the second line', ' Line2'),
# ('This is the third line', ' Line3')]
Python 3.x 버전 (아래 @seokhoonlee)
import csv
with open('file.csv', 'r') as f:
reader = csv.reader(f)
your_list = list(reader)
print(your_list)
# [['This is the first line', 'Line1'],
# ['This is the second line', 'Line2'],
# ['This is the third line', 'Line3']]
Python3 업데이트 :
import csv
with open('file.csv', 'r') as f:
reader = csv.reader(f)
your_list = list(reader)
print(your_list)
# [['This is the first line', 'Line1'],
# ['This is the second line', 'Line2'],
# ['This is the third line', 'Line3']]
팬더 는 데이터 처리에 능숙합니다. 사용 방법의 예는 다음과 같습니다.
import pandas as pd
# Read the CSV into a pandas data frame (df)
# With a df you can do many things
# most important: visualize data with Seaborn
df = pd.read_csv('filename.csv', delimiter=',')
# Or export it in many ways, e.g. a list of tuples
tuples = [tuple(x) for x in df.values]
# or export it as a list of dicts
dicts = df.to_dict().values()
한 가지 큰 장점은 팬더가 헤더 행을 자동으로 처리한다는 것입니다.
Seaborn에 대해 들어 본 적이 없다면 자세히 살펴 보는 것이 좋습니다.
파이썬으로 CSV 파일을 읽고 쓰는 방법 도 참조하십시오 .
팬더 # 2
import pandas as pd
# Get data - reading the CSV file
import mpu.pd
df = mpu.pd.example_df()
# Convert
dicts = df.to_dict('records')
df의 내용은 다음과 같습니다.
country population population_time EUR
0 Germany 82521653.0 2016-12-01 True
1 France 66991000.0 2017-01-01 True
2 Indonesia 255461700.0 2017-01-01 False
3 Ireland 4761865.0 NaT True
4 Spain 46549045.0 2017-06-01 True
5 Vatican NaN NaT True
dicts의 내용은
[{'country': 'Germany', 'population': 82521653.0, 'population_time': Timestamp('2016-12-01 00:00:00'), 'EUR': True},
{'country': 'France', 'population': 66991000.0, 'population_time': Timestamp('2017-01-01 00:00:00'), 'EUR': True},
{'country': 'Indonesia', 'population': 255461700.0, 'population_time': Timestamp('2017-01-01 00:00:00'), 'EUR': False},
{'country': 'Ireland', 'population': 4761865.0, 'population_time': NaT, 'EUR': True},
{'country': 'Spain', 'population': 46549045.0, 'population_time': Timestamp('2017-06-01 00:00:00'), 'EUR': True},
{'country': 'Vatican', 'population': nan, 'population_time': NaT, 'EUR': True}]
팬더 # 3
import pandas as pd
# Get data - reading the CSV file
import mpu.pd
df = mpu.pd.example_df()
# Convert
tuples = [[row[col] for col in df.columns] for row in df.to_dict('records')]
The content of tuples
is:
[['Germany', 82521653.0, Timestamp('2016-12-01 00:00:00'), True],
['France', 66991000.0, Timestamp('2017-01-01 00:00:00'), True],
['Indonesia', 255461700.0, Timestamp('2017-01-01 00:00:00'), False],
['Ireland', 4761865.0, NaT, True],
['Spain', 46549045.0, Timestamp('2017-06-01 00:00:00'), True],
['Vatican', nan, NaT, True]]
Update for Python3:
import csv
from pprint import pprint
with open('text.csv', newline='') as file:
reader = csv.reader(file)
l = list(map(tuple, reader))
pprint(l)
[('This is the first line', ' Line1'),
('This is the second line', ' Line2'),
('This is the third line', ' Line3')]
If csvfile is a file object, it should be opened with newline=''
.
csv module
If you are sure there are no commas in your input, other than to separate the category, you can read the file line by line and split on ,
, then push the result to List
That said, it looks like you are looking at a CSV file, so you might consider using the modules for it
result = []
for line in text.splitlines():
result.append(tuple(line.split(",")))
As said already in the comments you can use the csv
library in python. csv means comma separated values which seems exactly your case: a label and a value separated by a comma.
Being a category and value type I would rather use a dictionary type instead of a list of tuples.
Anyway in the code below I show both ways: d
is the dictionary and l
is the list of tuples.
import csv
file_name = "test.txt"
try:
csvfile = open(file_name, 'rt')
except:
print("File not found")
csvReader = csv.reader(csvfile, delimiter=",")
d = dict()
l = list()
for row in csvReader:
d[row[1]] = row[0]
l.append((row[0], row[1]))
print(d)
print(l)
A simple loop would suffice:
lines = []
with open('test.txt', 'r') as f:
for line in f.readlines():
l,name = line.strip().split(',')
lines.append((l,name))
print lines
Extending your requirements a bit and assuming you do not care about the order of lines and want to get them grouped under categories, the following solution may work for you:
>>> fname = "lines.txt"
>>> from collections import defaultdict
>>> dct = defaultdict(list)
>>> with open(fname) as f:
... for line in f:
... text, cat = line.rstrip("\n").split(",", 1)
... dct[cat].append(text)
...
>>> dct
defaultdict(<type 'list'>, {' CatA': ['This is the first line', 'This is the another line'], ' CatC': ['This is the third line'], ' CatB': ['This is the second line', 'This is the last line']})
This way you get all relevant lines available in the dictionary under key being the category.
Here is the easiest way in Python 3.x to import a CSV to a multidimensional array, and its only 4 lines of code without importing anything!
#pull a CSV into a multidimensional array in 4 lines!
L=[] #Create an empty list for the main array
for line in open('log.txt'): #Open the file and read all the lines
x=line.rstrip() #Strip the \n from each line
L.append(x.split(',')) #Split each line into a list and add it to the
#Multidimensional array
print(L)
Next is a piece of code which uses csv module but extracts file.csv contents to a list of dicts using the first line which is a header of csv table
import csv
def csv2dicts(filename):
with open(filename, 'rb') as f:
reader = csv.reader(f)
lines = list(reader)
if len(lines) < 2: return None
names = lines[0]
if len(names) < 1: return None
dicts = []
for values in lines[1:]:
if len(values) != len(names): return None
d = {}
for i,_ in enumerate(names):
d[names[i]] = values[i]
dicts.append(d)
return dicts
return None
if __name__ == '__main__':
your_list = csv2dicts('file.csv')
print your_list
참고URL : https://stackoverflow.com/questions/24662571/python-import-csv-to-list
'Programing' 카테고리의 다른 글
Javascript / jQuery를 사용하여 HTML 요소에서 모든 속성 가져 오기 (0) | 2020.06.03 |
---|---|
Swift에서 키-값 관찰 (KVO)이 가능합니까? (0) | 2020.06.03 |
C # 문자열에서 여러 문자 바꾸기 (0) | 2020.06.03 |
사용자 정의 listview 어댑터 getView 메소드가 여러 번 호출되며 일관된 순서로 호출되지 않습니다. (0) | 2020.06.03 |
파이썬에서 선행 공백을 어떻게 제거합니까? (0) | 2020.06.03 |