Python의 Haversine 공식 (두 GPS 지점 사이의 방향 및 거리)
문제
2 개의 GPS 지점 사이 의 거리와 방위 를 확인하는 방법을 알고 싶습니다 . 나는 haversine 공식에 대해 연구했습니다. 누군가 저에게 동일한 데이터를 사용하여 베어링을 찾을 수 있다고 말했습니다.
편집하다
모든 것이 잘 작동하지만 베어링은 아직 제대로 작동하지 않습니다. 베어링 출력은 음수이지만 0-360도 사이 여야합니다. 설정된 데이터는 수평 방위를 만들어야하며 96.02166666666666다음과 같습니다.
Start point: 53.32055555555556 , -1.7297222222222221
Bearing: 96.02166666666666
Distance: 2 km
Destination point: 53.31861111111111, -1.6997222222222223
Final bearing: 96.04555555555555
내 새 코드는 다음과 같습니다.
from math import *
Aaltitude = 2000
Oppsite = 20000
lat1 = 53.32055555555556
lat2 = 53.31861111111111
lon1 = -1.7297222222222221
lon2 = -1.6997222222222223
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * atan2(sqrt(a), sqrt(1-a))
Base = 6371 * c
Bearing =atan2(cos(lat1)*sin(lat2)-sin(lat1)*cos(lat2)*cos(lon2-lon1), sin(lon2-lon1)*cos(lat2))
Bearing = degrees(Bearing)
print ""
print ""
print "--------------------"
print "Horizontal Distance:"
print Base
print "--------------------"
print "Bearing:"
print Bearing
print "--------------------"
Base2 = Base * 1000
distance = Base * 2 + Oppsite * 2 / 2
Caltitude = Oppsite - Aaltitude
a = Oppsite/Base
b = atan(a)
c = degrees(b)
distance = distance / 1000
print "The degree of vertical angle is:"
print c
print "--------------------"
print "The distance between the Balloon GPS and the Antenna GPS is:"
print distance
print "--------------------"
다음은 Python 버전입니다.
from math import radians, cos, sin, asin, sqrt
def haversine(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
r = 6371 # Radius of earth in kilometers. Use 3956 for miles
return c * r
이러한 답변의 대부분은 지구 반경을 "반올림"합니다. 다른 거리 계산기 (예 : geopy)와 비교하여 확인하면이 기능이 꺼집니다.
이것은 잘 작동합니다.
from math import radians, cos, sin, asin, sqrt
def haversine(lat1, lon1, lat2, lon2):
R = 3959.87433 # this is in miles. For Earth radius in kilometers use 6372.8 km
dLat = radians(lat2 - lat1)
dLon = radians(lon2 - lon1)
lat1 = radians(lat1)
lat2 = radians(lat2)
a = sin(dLat/2)**2 + cos(lat1)*cos(lat2)*sin(dLon/2)**2
c = 2*asin(sqrt(a))
return R * c
# Usage
lon1 = -103.548851
lat1 = 32.0004311
lon2 = -103.6041946
lat2 = 33.374939
print(haversine(lat1, lon1, lat2, lon2))
베어링 계산이 잘못되었습니다. 입력을 atan2로 바꿔야합니다.
bearing = atan2(sin(long2-long1)*cos(lat2), cos(lat1)*sin(lat2)-sin(lat1)*cos(lat2)*cos(long2-long1))
bearing = degrees(bearing)
bearing = (bearing + 360) % 360
This will give you the correct bearing.
There is also a vectorized implementation, which allows to use 4 numpy arrays instead of scalar values for coordinates:
def distance(s_lat, s_lng, e_lat, e_lng):
# approximate radius of earth in km
R = 6373.0
s_lat = s_lat*np.pi/180.0
s_lng = np.deg2rad(s_lng)
e_lat = np.deg2rad(e_lat)
e_lng = np.deg2rad(e_lng)
d = np.sin((e_lat - s_lat)/2)**2 + np.cos(s_lat)*np.cos(e_lat) * np.sin((e_lng - s_lng)/2)**2
return 2 * R * np.arcsin(np.sqrt(d))
You can try the following:
from haversine import haversine
haversine((45.7597, 4.8422),(48.8567, 2.3508),miles = True)
243.71209416020253
You can solve the negative bearing problem by adding 360°. Unfortunately, this might result in bearings larger than 360° for positive bearings. This is a good candidate for the modulo operator, so all in all you should add the line
Bearing = (Bearing + 360) % 360
at the end of your method.
Here's a numpy vectorized implementation of the Haversine Formula given by @Michael Dunn, gives a 10-50 times improvement over large vectors.
from numpy import radians, cos, sin, arcsin, sqrt
def haversine(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
#Convert decimal degrees to Radians:
lon1 = np.radians(lon1.values)
lat1 = np.radians(lat1.values)
lon2 = np.radians(lon2.values)
lat2 = np.radians(lat2.values)
#Implementing Haversine Formula:
dlon = np.subtract(lon2, lon1)
dlat = np.subtract(lat2, lat1)
a = np.add(np.power(np.sin(np.divide(dlat, 2)), 2),
np.multiply(np.cos(lat1),
np.multiply(np.cos(lat2),
np.power(np.sin(np.divide(dlon, 2)), 2))))
c = np.multiply(2, np.arcsin(np.sqrt(a)))
r = 6371
return c*r
The Y in atan2 is, by default, the first parameter. Here is the documentation. You will need to switch your inputs to get the correct bearing angle.
bearing = atan2(sin(lon2-lon1)*cos(lat2), cos(lat1)*sin(lat2)in(lat1)*cos(lat2)*cos(lon2-lon1))
bearing = degrees(bearing)
bearing = (bearing + 360) % 360
Refer to this link :https://gis.stackexchange.com/questions/84885/whats-the-difference-between-vincenty-and-great-circle-distance-calculations
this actually gives two ways of getting distance. They are Haversine and Vincentys. From my research I came to know that Vincentys is relatively accurate. Also use import statement to make the implementation.
Here are two functions to calculate distance and bearing, which are based on the code in previous messages and https://gist.github.com/jeromer/2005586 (added tuple type for geographical points in lat, lon format for both functions for clarity). I tested both functions and they seem to work right.
#coding:UTF-8
from math import radians, cos, sin, asin, sqrt, atan2, degrees
def haversine(pointA, pointB):
if (type(pointA) != tuple) or (type(pointB) != tuple):
raise TypeError("Only tuples are supported as arguments")
lat1 = pointA[0]
lon1 = pointA[1]
lat2 = pointB[0]
lon2 = pointB[1]
# convert decimal degrees to radians
lat1, lon1, lat2, lon2 = map(radians, [lat1, lon1, lat2, lon2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
r = 6371 # Radius of earth in kilometers. Use 3956 for miles
return c * r
def initial_bearing(pointA, pointB):
if (type(pointA) != tuple) or (type(pointB) != tuple):
raise TypeError("Only tuples are supported as arguments")
lat1 = radians(pointA[0])
lat2 = radians(pointB[0])
diffLong = radians(pointB[1] - pointA[1])
x = sin(diffLong) * cos(lat2)
y = cos(lat1) * sin(lat2) - (sin(lat1)
* cos(lat2) * cos(diffLong))
initial_bearing = atan2(x, y)
# Now we have the initial bearing but math.atan2 return values
# from -180° to + 180° which is not what we want for a compass bearing
# The solution is to normalize the initial bearing as shown below
initial_bearing = degrees(initial_bearing)
compass_bearing = (initial_bearing + 360) % 360
return compass_bearing
pA = (46.2038,6.1530)
pB = (46.449, 30.690)
print haversine(pA, pB)
print initial_bearing(pA, pB)
'Programing' 카테고리의 다른 글
| Rails 마이그레이션 : t. 대체 이름이있는 참조? (0) | 2020.08.13 |
|---|---|
| 10 진수 유형에 대한 선언 접미사 (0) | 2020.08.13 |
| HTML5 localStorage는 비동기식입니까? (0) | 2020.08.12 |
| 스토리 보드를 사용하지 않고 새 Swift 프로젝트를 생성하려면 어떻게합니까? (0) | 2020.08.12 |
| WPF에서 WndProc 메시지를 처리하는 방법은 무엇입니까? (0) | 2020.08.12 |